Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция «Бирациональная геометрия и многообразия Фано», посвященная В.А. Исковских
24 июня 2019 г. 14:30–15:30, г. Москва, МИАН
 


Quotients of higher dimensional Cremona groups

Jérémy Blanc
Видеозаписи:
MP4 1,903.1 Mb
MP4 864.0 Mb

Количество просмотров:
Эта страница:234
Видеофайлы:46

Jérémy Blanc
Фотогалерея



Аннотация: We study large groups of birational transformations $\mathrm{Bir}(X)$, where $X$ is a variety of dimension at least $3$, defined over $\mathbb{C}$ or a subfield of $\mathbb{C}$. Two prominent cases are when $X$ is the projective space $\mathbb{P}^n$, in which case $\mathrm{Bir}(X)$ is the Cremona group of rank $n$, or when $X \subset \mathbb{P}^{n+1}$ is a smooth cubic hypersurface. In both cases, and more generally when $X$ is birational to a conic bundle, we produce in nitely many distinct group homomorphisms from $\mathrm{Bir}(X)$ to $\mathbb{Z}/2$. As a consequence we also obtain that the Cremona group of rank $n \ge 3$ is not generated by linear and Jonquires elements. Joint work with Stphane Lamy and Susanna Zimmermann.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024