Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Декабрьские чтения в Томске. 2018
13 декабря 2018 г. 09:30–10:20, г. Томск, Национальный исследовательский Томский государственный университет
 


Об эквивалентности лежандровых узлов

И. А. Дынников

Математический институт им. В.А. Стеклова РАН, Москва
Видеозаписи:
MP4 538.5 Mb
Дополнительные материалы:
Adobe PDF 839.4 Kb

Количество просмотров:
Эта страница:221
Видеофайлы:31
Материалы:8



Аннотация: Лежандровыми называют гладкие узлы в трехмерном пространстве, всюду касающиеся стандартной контактной структуры. Такие узлы называются эквивалентными, если они изотопны в классе лежандровых узлов. В контактной топологии особую роль играют кольца (произведения окружности на отрезок), вложенные в трехмерное протранство так, что вдоль края они касаются стандартной контактной структуры. Компоненты края при этом являются лежандровыми узлами одного топологического типа. Верно ли, что они всегда эквивалентны как лежандровы узлы? В большом количестве не слишком сложных примеров ответ оказывается положительным.
В недавней работе докладчика и М. Прасолова построен пример кольца указанного вида, для которого ожидалось, что компоненты его края неэквивалентны как лежандровы узлы. Совместно с В. Шастиным нам удалось это доказать. Основная трудность исходила из большой сложности примера - диаграммы узлов имеют более 250 перекрестков, вычисление информативных инвариантов лежандровых узлов для узлов такой сложности нереалистично. Для доказательства, как и для построения этого примера, использовалась развитая докладчиком и М. Прасоловым техника прямоугольных диаграмм.

Дополнительные материалы: Дынников.pdf (839.4 Kb)
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024