Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Геометрическая теория оптимального управления
17 апреля 2019 г., г. Москва, МГУ им. М. В. Ломоносова, ГЗ, механико-математический факультет, ауд. 13-20
 


Об одной задаче оптимального управления, связанной с самосогласованными барьерами на выпуклых конусах

Р. Хильдебранд

Laboratoire Jean Kuntzmann

Количество просмотров:
Эта страница:159

Аннотация: Общая задача конического программирования состоит в минимизации линейной функции цены на пересечении аффинного подпространства с выпуклым конусом. Известные классы задач конического программирования - задача линейного программирования, задача квадратично-конического программирования, задача полу-определенного программирования. Стандартный способ решения задачи конического программирования - методы внутренней точки. Центральным объектом этих методов является само согласованный барьер - выпуклая функция пенализации, определенная на внутренности конуса и удовлетворяющая неким дифференциальным неравенствам. На двумерных сечениях конуса эти неравенства мо жно переформулировать в виде управляемой системы на плоскости с ограничением на значения скалярного управления. Различные вопросы в теории самосогласованных барьеров приводят к разным задачам оптимального управления, определенным с помощью этой системы. Мы представим решение одной из этих проблем и обсудим некоторые доселе открытые вопросы.

Website: https://opu.math.msu.su/node/529
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024