|
|
Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
17 апреля 2019 г. 18:30, г. Москва, Мехмат МГУ, ауд. 16-22
|
|
|
|
|
|
Вещественные числа Гурвица
С. К. Ландо Государственный университет – Высшая школа экономики
|
Количество просмотров: |
Эта страница: | 320 |
|
Аннотация:
Комплексные числа Гурвица перечисляют разветвленные накрытия проективной прямой с предписанными данными ветвления над заданными точками. Эти числа тесно связаны с теорией представлений симметрических групп, с теорией пересечений на пространствах Гурвица и пространствах модулей комплексных кривых, с интегрируемыми системами, а также с топологической рекурсией. Исследование разнообразные видов комплексных чисел Гурвица в настоящее время превратилось в индустрию.
Про вещественные числа Гурвица, перечисляющие вещественные разветвленные накрытия проективной прямой, известно гораздо меньше. В вещественном случае количество накрытий зависит, вообще говоря, от расположения точек ветвления. Избавиться от этой зависимости удалось пока лишь в одном содержательном частном случае (для полиномиальных чисел Гурвица, Итенберг-Звонкин).
В докладе речь пойдет о простых вещественных числах Гурвица, перечисляющих вещественные накрытия общего положения, в ситуации, когда накрывающая кривая являются разделяющей. Будут описаны уравнения в частных производных, которым удовлетворяют производящие функции для простых вещественных чисел Гурвица, и алгебры, заменяющие групповые алгебры симметрических групп.
Доклад основан на совместной работе М.Казаряна, докладчика и С.Натанзона.
|
|