Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция по комплексному анализу и математической физике, посвященная 70-летию А. Г. Сергеева
19 марта 2019 г. 12:00–12:40, г. Москва, МИАН, ул. Губкина, д. 8, конференц-зал
 


Geometric and algebraic restrictions of differential forms

Stanislaw Janeczko

Warsaw University of Technology
Видеозаписи:
MP4 1,041.3 Mb
MP4 472.9 Mb

Количество просмотров:
Эта страница:202
Видеофайлы:33

Stanislaw Janeczko
Фотогалерея



Аннотация: For a smooth manifold $M$ and the space $\Lambda ^p(M)$ of all differential $p$-forms on $M$ the restriction $\omega \vert_N$ of $\omega \in \Lambda ^p(M)$ to a smooth submanifold $N\subset M$ is well defined by the geometry of $N.$ If $N$ is any subset of $M$ then the forms $\alpha +d\beta ,$ $\alpha \in \Lambda ^{p}(M),$ $\beta \in \Lambda ^{p-1}(M),$ where $\alpha $ and $\beta $ annihilates any $p$ - tuple (and $p-1$ - tuple respectively) of vectors in $T_xM$, $x\in N,$ are called algebraically vanishing on $N$ or having zero algebraic restriction to $N$. Now the restriction (algebraic restriction) of $\omega \in \Lambda ^p(M)$ to $N$ is defined as an equivalence class of $\omega $ modulo forms with zero algebraic restriction to $N.$ We study germs of differential forms over singular varieties. The geometric restriction of differential forms to singular varieties is introduced and algebraic restrictions of differential forms with vanishing geometric restrictions, called residual algebraic restrictions, are investigated. Residues of plane curves-germs, hypersurfaces, Lagrangian varieties as well as the geometric and algebraic restriction via a mapping were calculated. This is a joint work with Goo Ishikawa.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024