Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
30 января 2019 г. 14:00, г. Москва, МИАН
 


Исчисление Шуберта и квантовые интегрируемые системы

В. Г. Горбунов

University of Aberdeen

Количество просмотров:
Эта страница:233

Аннотация: Исчисление Шуберта, классическое, эквивариантное и квантовое по существу является разделом теории пересечений на однородных пространствах связанных с классическими группами Ли.
В докладе мы опишем новое свойство классического, эквивариантного и квантового исчисления Шуберта, которое выполняется для всех типов классических групп Ли. В качестве основного примера мы будем использовать многообразия Грассмана типа А. Обычное определение циклов Шуберта включают выбор параметра, а именно выбор полного флага. Изучение зависимости циклов Шуберта от этого параметра в эквивариантных когомологиях приводит к интересному решению квантового уравнения Янга-Бакстера и, следовательно, связывает исчисление Шуберта и теорию квантовых интегрируемых систем.
В этом докладе мы опишем соответствующие квантовые интегрируемые системы, которые оказываются двумя вырождениями $sl_2$ Янгиана, в терминах геометрической теории представлений и объясним некоторые интересные следствия этой связи для исчисления Шуберта. Мы также объясним, как это связано с новым направлением в современной теории квантовых групп развиваемом Некрасовым, Шаташвилли, Окуньковым и Мауликом.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024