Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




3 января 2019 г. 11:40, International conference «Topological methods in dynamics and related topics», N Novgorod, Russia  


Interpolation for determinantal point processes

A. I. Bufetovab

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Видеозаписи:
MP4 625.1 Mb

Количество просмотров:
Эта страница:442
Видеофайлы:91

A. I. Bufetov



Аннотация: Consider a Gaussian Analytic Function on the disk, that is, a random series whose coefficients are independent complex Gaussians. In joint work with Yanqi Qiu and Alexander Shamov, we show that the zero set of a Gaussian Analytic Function is a uniqueness set for the Bergman space on the disk: in other words, almost surely, there does not exist a nonzero square-integrable holomorphic function having these zeros. The key role in our argument is played by the determinantal structure of the zeros, and we prove, in general, that the family of reproducing kernels along a realization of a determinantal point process generates the whole ambient Hilbert space, thus settling a conjecture of Lyons and Peres. In a sequel paper, joint with Yanqi Qiu, we study how to recover a holomorphic function from its values on our set. The talk is based on the preprints arXiv:1806.02306 and arXiv:1612.06751

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024