Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар «Алгебры в анализе»
19 мая 2017 г. 18:05–18:35, г. Москва, Механико-математический факультет МГУ, ауд. 13-20.
 


Квантование негладких струн и некоммутативная геометрия

А. Г. Сергеев

Количество просмотров:
Эта страница:240

Аннотация: Фазовое многообразие $d$-мерной теории гладких замкнутых струн можно отождествить с пространством $\Omega(R_d)$ гладких петель со значениями в $d$-мерном пространстве Минковского $R_d$. Однако симплектическая форма $\omega$ этой теории может быть корректно определена на более широком соболевском пространстве $V_d=H_0^{1/2}(S^1,R_d)$, состоящем из полудифференцируемых петель со значениями в $R_d$. Группа репараметризаций таких петель совпадает с группой $QS(S^1)$ квазисимметричных гомеоморфизмов окружности, и ее действие на соболевском пространстве $V_d$ сохраняет симплектическую форму $\omega$. С учетом этого кажется естественным выбрать в качестве фазового многообразия теории негладких струн пространство $V_d$ с действием группы $QS(S^1)$. Если бы это действие было гладким, мы могли бы сопоставить указанной теории струн классическую систему,состоящую из фазового многообразия $V_d$ и алгебры Ли группы $QS(S^1)$. Однако это действие заведомо гладким не является, поэтому мы не можем сопоставить группе $QS(S^1)$ никакой классической алгебры Ли. Тем не менее, пользуясь соображениями из некоммутативной геометрии, удается построить квантовую алгебру Ли, ассоциированную с парой $(V_d,QS(S^1))$, что позволяет проквантовать теорию негладких замкнутых струн.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024