Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2008
28 июля 2008 г. 11:15, г. Дубна
 


Цепные дроби квадратных корней из целых чисел. Лекция пятая

В. И. Арнольд
Видеозаписи:
Real Video 232.1 Mb
Windows Media 245.2 Mb
Flash Video 386.8 Mb
MP4 676.9 Mb

Количество просмотров:
Эта страница:1451
Видеофайлы:894

В. И. Арнольд



Аннотация: Цепная дробь вещественного числа периодична если и только если это число удовлетворяет квадратному уравнению с целыми коэффициентами. (Лагранж)
Всякая периодическая последовательность определяет такую цепную дробь, но для уравнений $x^2=Q$ или $x^2+px+q=0$ c целыми коэффициентами периодические цепные дроби обладают удивительными специальными свойствами. Например, если длина периода равна 2, то один из членов периода делится на другой. Если длина периода нечетное число, то $Q$ является суммой квадратов двух натуральных чисел. Однако если $Q$ сумма квадратов, то длина периода может быть как четной, так и нечетной.
Назовем число $Q$ «красным», если длина периода цепной дроби нечетна.
В курсе будут доказаны некоторые теоремы о «красных» числах и сформулированы новые гипотезы о них. Будет также обсуждено понятие равномерного распределения множеств точек в эвклидовых пространствах с применениями к распределениям простых и «красных» чисел.
Никаких специальных предварительных знаний у слушателей не предполагается.
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024