|
|
Семинар им. В. А. Исковских
1 ноября 2018 г. 18:00, г. Москва, МИАН, комн. 530 (ул. Губкина, 8)
|
|
|
|
|
|
A non-vanishing result for weighted complete intersections
L. Tasin |
Количество просмотров: |
Эта страница: | 157 |
|
Аннотация:
Let $X$ be a smooth (or mildly singular) projective variety and let $H$ be an ample line bundle on $X$. Kawamata conjectured that if $H-K_X$ is ample, then the linear system $|H|$ is not empty. I will explain that the conjecture holds true for weighted complete intersections which are Fano or Calabi-Yau, relating it with the Frobenius coin problem.
This is based on a joint work with M. Pizzato and T. Sano.
Язык доклада: английский
|
|