|
|
Петербургский топологический семинар им. В. А. Рохлина
15 октября 2018 г. 17:15–19:00, г. Санкт-Петербург, ПОМИ, комн. 311 (наб. р. Фонтанки, 27)
|
|
|
|
|
|
Minimal 4-colored graphs representing an infinite family
of hyperbolic 3-manifolds
Е. А. Фоминых Санкт-Петербургский государственный университет, математико-механический факультет
|
Количество просмотров: |
Эта страница: | 267 |
|
Аннотация:
The graph complexity of a compact 3-manifold is defined as
the minimum order among all 4-colored graphs representing it.
Exact calculations of graph complexity have been performed,
through tabulations, for closed orientable manifolds (up to
graph complexity 32) and for compact orientable 3-manifolds
with toric boundary (up to graph complexity 14) and
for infinite families of lens spaces. In this talk we give
two-sided bounds for the graph complexity of tetrahedral
manifolds. As a consequence, we compute the exact value
of this invariant for an infinite family of such manifolds.
|
|