Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






International conference "High-dimensional approximation and discretization"
25 сентября 2018 г. 12:45–13:25, г. Москва
 


Nikolskii constants for spherical polynomials and entire functions of spherical exponential type

D. V. Gorbachev
Видеозаписи:
MP4 1,302.8 Mb
MP4 591.6 Mb

Количество просмотров:
Эта страница:193
Видеофайлы:43

D. V. Gorbachev
Фотогалерея



Аннотация: We study the asymptotic behavior of sharp Nikolskii constant
$$\mathcal{C}(n, d, p, q) := \sup \{\|{f}\|_{L^q(\mathbb{S}^d)}: f \in \Pi_n^d, \|{f}\|_{L^p(\mathbb{S}^d)} = 1\}$$
for $0 < p < q \le \infty$ as $n \to \infty$, where $\Pi_n^d$ denotes the space of all spherical polynomials $f$ of degree at most
$n$ on the unit sphere $\mathbb{S}^d \subset \mathbb{R}^{d+1}$.
1. We prove that for $0 < p < \infty$ and $q = \infty$,
$$\lim\limits_{n \to \infty} \frac{\mathcal{C}(n, d, p, \infty)} {n^{d/p}} = \mathcal{L}(d, p, \infty),$$
and for $0 < p < q < \infty$,
$$\liminf\limits_{n \to \infty} \frac{\mathcal{C}(n, d, p, q)} {n^{d (1/p-1/q)}} \ge \mathcal{L}(d, p, q),$$
where the constant $\mathcal{L}(d, p, q)$ is defined for $0 < p < q \le \infty$ by
$$\mathcal{L}(d, p, q) := \sup \{\|{f}\|_{L^q(\mathbb{R}^d)}: f \in \mathcal{E}_p^d, \|{f}\|_{L^p(\mathbb{R}^d)} = 1\}$$
with $\mathcal{E}_p^d$ denoting the set of all entire functions $f \in L^p(\mathbb{R}^d)$ of spherical exponential type at most $1$.
These results extend the recent results of Levin and Lubinsky for trigonometric polynomials on the unit circle.
Compared with those in one variable, our proof in higher-dimensional case is more difficult because functions on the sphere can not be identified as periodic functions on Euclidean space and explicit connections between spherical polynomial interpolation and the Shannon sampling theorem for entire functions of exponential type are not available.
Our proof of the upper estimate relies on a recent deep result of Bondarenko, Radchenko and Viazovska on spherical designs:
$$\frac{1}{|\mathbb{S}^d|} \int\limits_{\mathbb{S}^d} f(x) dx = \frac{1}{N} \sum\limits^{N}_{j=1} f(x_{n,j} ),\quad f \in \Pi_n^d,$$
an earlier result of Yudin on the distribution of points of spherical designs $\{x_{n,j}\}$, and also our previous result on a connection between positive cubature formulas and the Marcinkiewitcz–Zygmund inequality on the sphere:
$$\|{f}\|_p \asymp \left(\sum\limits_{\omega\in\Lambda} \lambda_{n,j} |f(x_{n,j} )|^p \right)^{1/p} ,\quad 0 < p < \infty.$$
The proof of the lower estimate is based on the de la Vallée-Poussin type kernels associated with a smooth cutoff function on the sphere and also some properties of the exponential mapping from the tangent plane to the sphere, which connects functions on sphere with functions on Euclidean space.
2. While it remains a very challenging open problem to determine the exact value of the Nikolskii constant $\mathcal{L}(d, 1, \infty)$, we are able to find the exact value of the Nikolskii constant for $p = 1, q = \infty$ and nonnegative functions $f \in \mathcal{E}^d_1$:
$$\sup\limits_{0\le f\in\mathcal{E}^d_1} \frac{\|{f}\|_{L^{\infty}(\mathbb{R}^d)}}{\|{f}\|_{L^{1}(\mathbb{R}^d)}} = \frac{1}{2^{d-1}|\mathbb{S}^d|\Gamma(d + 1)}.$$

3. We investigate the normalized Nikolskii constant
$$L_d :=\frac{|\mathbb{S}^d|\Gamma(d + 1)}{2}\mathcal{L}(d, 1,\infty).$$
For this problem, we first show existence of an extremal function and its uniqueness.
It was known that $L_d \le 1$ and $L_d \ge e^{-d(1+o(1))}$ as $d\to\infty$. We improve these bounds as follows:
$$2^{-d} \le L_d \le {}_1F_2\left( \frac{d}{2};\frac{d}{2}+1;\frac{d}{2}+1;-\frac{\beta^2_d}{4}\right),$$
where $_1F_2$ and $\beta_d$ denote the hypergeometric function and the smallest positive zero of the Bessel function $J_{d/2}$, respectively. This implies that the constant $L_d$ decays exponentially fast as $d \to\infty$:
$$(0.5)^d \le L_d \le (\sqrt{2/e})^{d(1+o(1))},\quad \sqrt{2/e} = 0.85776 \dots .$$

4. We observe that for $d \ge 2$, the asymptotic order of the usual Nikolskii inequality on $\mathbb{S}^d$ can be signicantly improved in many cases, for lacunary spherical polynomials of the form $f = \sum\limits^m_{j=0} f_{n_j}$ with $f_{n_j}$ being a spherical harmonic of degree $n_j$ and $n_{j+1}-n_j \ge 3$. As is well known, for $d = 1$, the Nikolskii inequality for trigonometric polynomials on the unit circle does not have such a phenomenon.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024