Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Межкафедральный семинар МФТИ по дискретной математике
26 сентября 2018 г. 18:30, г. Долгопрудный, МФТИ, Корпус Прикладной Математики, 115
 


Доказательства теорем Каратеодори и Штейница через метод Перрона-Фробениуса

М. Григорьев

Количество просмотров:
Эта страница:254

Аннотация: Речь пойдет о классических теоремах комбинаторной геометрии - Каратеодори и Штейница. В d-мерном пространстве их можно сформулировать так: Теорема Каратеодори - выпуклая оболочка множества X есть объединение выпуклых оболочек подмножеств X мощности не более чем d+1; Теорема Штейница - внутренность выпуклой оболочки множества X есть объединение внутренностей выпуклых оболочек подмножеств X мощности не более чем 2d. Обе теоремы имеют элементарные доказательства с помощью линейной алгебры, но мы рассмотрим их новые доказательства с помощью теоремы Перрона-Фробениуса.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024