Аннотация:
В этом курсе изучается такой замечательный и вполне элементарный объект, как конечномерные коммутативные ассоциативные алгебры над комплексными числами. Здесь достаточно легко доказать первые структурные результаты, но получить полную классификацию едва ли возможно. Мы обсудим различные техники работы с конечномерными алгебрами (максимальные идеалы и локальные алгебры, фильтрации и градуировки, последовательность Гильберта-Самюэля и цоколь) и получим явное описание алгебр малых размерностей.
Оказывается, конечномерные алгебры тесно связаны с действиями с открытой орбитой коммутативных групп матриц на аффинных и проективных пространствах. Мы объясним эту связь. В процессе объяснения естественно возникнут такие понятия как экспонента линейного оператора, представление группы и циклический модуль, алгебра Ли и ее универсальная обертывающая. На последней лекции мы поговорим о действиях с открытой орбитой коммутативных групп матриц на различных проективных многообразиях (грассманианах и многообразиях флагов, взвешенных проективных пространствах) и сформулируем несколько нерешенных проблем.
Предполагается, что слушатели знакомы с комплексными числами и основами линейной алгебры. Все остальные понятия будут определены и проиллюстрированы на примерах.