|
|
Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
15 августа 2018 г. 14:00, г. Москва, МИАН
|
|
|
|
|
|
Об одном классе операторов, удовлетворяющих гипотезе Като
А. Л. Скубачевский Российский университет дружбы народов, г. Москва
|
Количество просмотров: |
Эта страница: | 326 |
|
Аннотация:
В 1961 году Т.Като сформулировал следующий вопрос: «Верно ли, что область определения квадратного корня из регулярно аккретивного оператора равна области определения квадратного корня из сопряженного оператора?» Вскоре Ж.-Л.Лионс получил достаточные условия выполнения гипотезы Като для абстрактных регулярно аккретивных операторов. Как следствие этих результатов, им было доказано, что сильно эллиптические дифференциальные операторы с гладкими коэффициентами и с условиями Дирихле в ограниченной области с гладкой границей удовлетворяют гипотезе Като. Доказательство было основано на теореме о гладкости обобщенных решений эллиптических задач, позволяющей выписать область определения сильно эллиптического дифференциального оператора с гладкими коэффициентами в явном виде, а также методах интерполяции. В 1972 году А.Макинтош построил контрпример абстрактного регулярно аккретивного оператора, не удовлетворяющего гипотезе Като. Поэтому в дальнейшем внимание математиков было связано с нахождением конкретных классов операторов, удовлетворяющих гипотезе Като. Для сильно эллиптических дифференциальных операторов с измеримыми ограниченными коэффициентами соответствующий результат был получен в цикле работ П.Ошера, С.Хофмана, А.Макинтоша и П.Тшамитшиана, начиная с 2001 года. Основная трудность доказательств была связана с отсутствием гладкости обобщенных решений, а, следовательно, с тем, что область определения оператора нельзя представить в явном виде в терминах пространств Соболева.
Оказывается, что сильно эллиптические дифференциально-разностные операторы также удовлетворяют гипотезе Като. В силу нелокального характера таких операторов гладкость обобщенных решений соответствующих уравнений может нарушаться внутри области. В настоящем докладе будет дан краткий обзор результатов, связанных с гипотезой Като для сильно эллиптических функционально-дифференциальных операторов, а также сформулированы новые результаты о выполнении гипотезы Като для эллиптических дифференциально-разностных операторов с вырождением. Принципиальным отличием дифференциально-разностных операторов с вырождением является то, что обобщенные решения соответствующих задач не принадлежат даже пространству Соболева 1-го порядка.
|
|