Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Гамильтоновы системы и статистическая механика
13 ноября 2017 г., г. Москва, МГУ, механико-математический факультет, ауд. 1402
 


О группах G_n^k и топологических инвариантах динамических систем

В. О. Мантуров

Количество просмотров:
Эта страница:130

Аннотация: В 2015 году автор определил семейство групп G_{n}^{k}, зависящих от двух натуральных параметров n>k, и выдвинул общий принцип: Если на множестве динамических систем, описывающих непрерывное движение n частиц, имеется хорошее свойство коразмерности 1, регулируемое k частицами, то у таких динамических систем есть топологические инварианты со значениями в G_{n}^{k}.
Простейший пример связан с изучением динамики движения точек на плоскости. Если в качестве хороших свойств рассмотреть свойства "три точки лежат на одной прямой" или "четыре точки лежат на одной окружности или прямой", мы получим гомоморфизмы групп (крашеных) кос в группы G_{n}^{3} и G_{n}^{4}.
Недавно автором были обнаружены примеры, когда частицами являются не обязательно точки, а многообразия.
В докладе речь пойдет о применении групп G_{n}^{k} к различным задачам топологии, геометрии и теории групп.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024