|
|
Автоморфные формы и их приложения
21 мая 2018 г. 17:20–17:40, г. Москва, EIMI, 10 Pesochnaya nab. Saint Peterburg
|
|
|
|
|
|
Modular Cauchy kernel corresponding to the Hecke curve
Нина Сахарова НИУ ВШЭ
|
|
Аннотация:
I’ll talk about the construction of the the modular Cauchy kernel
$\Xi_N(z_1, z_2)$, i.e. the modular invariant function of two
variables, $(z_1, z_2) \in \mathbb{H} \times \mathbb{H}$, with the
first order pole on the curve $$D_N=\left\{(z_1, z_2) \in \mathbb{H}
\times \mathbb{H}|~ z_2=\gamma z_1, ~\gamma \in \Gamma_0(N)
\right\}.$$ The function $\Xi_N(z_1, z_2)$ is used in two cases and
for two different purposes. Using the Rankin-Selberg method, Don
Zagier proved that the Hecke operator $T_k(m)$ on the space of cusp
forms of weight $k>2$ can be defined by a kernel
$\omega_m(z_1,\bar{z_2}, k)$. Firstly, we prove generalization of the
Zagier theorem for the Hecke subgroups $\Gamma_0(N)$ of genus $g>0$.
Namely, we obtain a kind of “kernel function” for the Hecke operator
$T_N(m)$ on the space of the weight 2 cusp forms for $\Gamma_0(N)$,
which is the analogue of the Zagier series $\omega_{m,
N}(z_1,\bar{z_2}, 2)$. Secondly, we consider an elementary proof of
the formula for the infinite Borcherds product of the difference of
two normalized Hauptmoduls, $J_{\Gamma_0(N)}(z_1)-J_{\Gamma_0(N)}(z_2)$, for genus zero
congruence subgroup $\Gamma_0(N)$. https://arxiv.org/pdf/1802.03299.pdf
|
|