Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Большой семинар кафедры теории вероятностей МГУ
9 ноября 2005 г., г. Москва, ГЗ МГУ, ауд. 16-24
 


Нули случайного полинома

Д. Н. Запорожец

Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук

Количество просмотров:
Эта страница:273

Аннотация: Пусть дана последовательность независимых одинаково распределенных невырожденных случайных величин $\xi_0,\xi_1,\dots,\xi_n,\dots$ . Построим по ним вещественный полином: $G_n(t)=\xi_0+\xi_1 t+\dots+\xi_n t^n$. Сколько вещественных корней он имеет в среднем? Более точно, какова асимптотика математического ожидания $N_n$, при $n$ стремящемся к бесконечности, где $N_n$ — это число вещественных корней $G_n$. В связи с этим вопросом в прошлом веке было получено множество результатов для широкого класса распределений $\xi_n$. Они послужили причиной для возникновения гипотезы об асимптотике среднего числа нулей случайного полинома. В докладе будет приведен пример, опровергающий гипотезу.
Вторая часть выступления будет посвящена нулям случайного полинома от нескольких переменных, а также системам из нескольких полиномов.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024