Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Transformation groups 2017. Conference dedicated to Prof. Ernest B. Vinberg on the occasion of his 80th birthday
18 декабря 2017 г. 14:30–15:20, г. Москва, НМУ (Большой Власьевский переулок, д. 11), к. 401
 


Toric topology of complex Grassmann manifolds

V. Buchstaber

Steklov Institute, Russia
Видеозаписи:
MP4 1,565.9 Mb
MP4 429.0 Mb

Количество просмотров:
Эта страница:351
Видеофайлы:57

V. Buchstaber



Аннотация: The complex Grassmann manifold $G(n,k)$ of all $k$-dimensional complex linear subspaces in the complex vector space $C^n$ plays the fundamental role in algebraic topology, algebraic and complex geometry, and other areas of mathematics. The manifolds $G(n,1)$ and $G(n,n-1)$ can be identified with the complex projective space $CP(n-1)$. The coordinate-wise action of the compact torus $T^n$ on $C^n$ induces its canonical action on the manifolds $G(n,k)$. The orbit space $CP(n-1)/T^n$ can be identified with the $(n-1)$-dimensional simplex. The description of the combinatorial structure and algebraic topology of the orbit space $G(n,k)/T^n$, where $k$ is not $1$ or $(n-1)$, is a well-known topical problem, which is far from being solved. The talk is devoted to the results in this direction which were recently obtained by methods of toric topology jointly with Svjetlana Terzić (University of Montenegro, Podgorica).

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024