Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Transformation groups 2017. Conference dedicated to Prof. Ernest B. Vinberg on the occasion of his 80th birthday
17 декабря 2017 г. 13:00–13:30, г. Москва, НИУ ВШЭ, Факультет математики (ул. Усачева, д. 6), к. 109
 

Sections


The partial compactification of the universal centralizer

A. Balibanu

Harvard University, USA

Количество просмотров:
Эта страница:108

Аннотация: Let $G$ be a semisimple algebraic group of adjoint type. The universal centralizer is the family of centralizers in $G$ of regular elements in $\text{Lie}(G)$, parametrized by their conjugacy classes. It has a natural symplectic structure, obtained by Hamiltonian reduction from the cotangent bundle $T^*G$. We consider a partial compactification of the universal centralizer, where each centralizer fiber is replaced by its closure inside the wonderful compactification of $G$. We show that the symplectic structure extends to a log-symplectic Poisson structure on the partial compactification, through a Hamiltonian reduction of the logarithmic cotangent bundle of the wonderful compactification.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024