Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Transformation groups 2017. Conference dedicated to Prof. Ernest B. Vinberg on the occasion of his 80th birthday
14 декабря 2017 г. 15:30–16:20, г. Москва, НМУ (Большой Власьевский переулок, д. 11), к. 401
 


Orbits in real loci of spherical varieties

D. Timashev

Moscow State University, Russia
Видеозаписи:
MP4 441.4 Mb
MP4 1,611.6 Mb

Количество просмотров:
Эта страница:259
Видеофайлы:95

D. Timashev



Аннотация: The talk is based on a joint work in progress with S. Cupit-Foutou. Given a spherical variety $X$ for a complex reductive group $G$ defined over real numbers, we address the problem of describing orbits of the real Lie group $G(R) $ in the real locus $X(R)$. (There may be several real orbits even if $X$ is $G$-homogeneous.) We concentrate on two cases: (1) $X$ is a symmetric space; (2) $G$ is split over $R$ and $X$ is $G$-homogeneous. The answer is similar in both cases: the $G(R)$-orbits are classified by the orbits of a finite reflection group $W_X$ (the “little Weyl group”) acting in a fancy way on the set of orbits of $T(R)$ in $Z(R)$, where $T$ is a maximal torus in $G$ and $Z$ is a “Brion–Luna–Vust slice” in $X$. The latter orbit set can be described combinatorially. We use different tools: Galois cohomology in (1) and Knop's theory of polarized cotangent bundle in (2), and we expect that the second approach can be extended to the non-split case.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024