Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Transformation groups 2017. Conference dedicated to Prof. Ernest B. Vinberg on the occasion of his 80th birthday
14 декабря 2017 г. 09:30–10:20, г. Москва, НМУ (Большой Власьевский переулок, д. 11), к. 401
 


First order rigidity of high-rank arithmetic groups

A. Lubotzky

Hebrew University, Israel
Видеозаписи:
MP4 439.4 Mb
MP4 1,603.9 Mb

Количество просмотров:
Эта страница:190
Видеофайлы:37

A. Lubotzky



Аннотация: The family of high rank arithmetic groups is a class of groups which is playing an important role in various areas of mathematics. It includes SL(n,Z), for n>2, SL(n, Z[1/p] ) for n>1, their finite index subgroups and many more. A number of remarkable results about them have been proven including; Mostow rigidity, Margulis Super rigidity and the Quasi-isometric rigidity.
We will talk about a new type of rigidity: "first order rigidity". Namely if D is such a non-uniform characteristic zero arithmetic group and E a finitely generated group which is elementary equivalent to it ( i.e., the same first order theory in the sense of model theory) then E is isomorphic to D.
This stands in contrast with Zlil Sela's remarkable work which implies that the free groups, surface groups and hyperbolic groups ( many of which are low-rank arithmetic groups) have many non isomorphic finitely generated groups which are elementary equivalent to them.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024