Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция "Зеркальная симметрия и ее приложения"
18 декабря 2017 г. 10:30, г. Москва, МИАН, ул. Губкина, д. 8, конференц-зал
 


Higher Kac-Moody algebras

B. Davison
Видеозаписи:
MP4 1,880.6 Mb
MP4 1,880.6 Mb

Количество просмотров:
Эта страница:267
Видеофайлы:49

B. Davison



Аннотация: It was conjectured by Kac, and proved by Hausel, that the constant term of the Kac polynomials, counting absolutely indecomposable representations of a set quiver with varying dimension vectors, record the root multiplicities of the associated Kac-Moody Lie algebra. This begs the question: is there some Lie-theoretic interpretation of the other coefficients of the Kac polynomials? The answer to this question comes via Donaldson-Thomas theory. It was shown by Mozgovoy that the Kac polynomials themselves can be considered as refined DT invariants of special quivers (endowed with potential). The Jacobi algebras associated to such data can be thought of as “nc-Landau-Ginzburg models”. Recent work with Sven Meinhardt on the categorification of DT theory shows how to upgrade this statement to a Lie-theoretic interpretation for the entire Kac polynomials (not just the constant coefficients). If there is time I will explain how recent work of McGerty and Nevins, along with purity results on the Borel-Moore homology of preprojective stacks, suggests a conjectural approach to “Borcherdsifying” the resulting extended Kac-Moody Lie algebra.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024