Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




27 октября 2017 г. 14:15, Mathematical Colloquim, Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia  


Moment determinacy of probability distributions

J. Stoyanovab

a Newcastle University, United Kingdom
b Bulgarian Academy of Sciences, Sofia, Bulgaria

Количество просмотров:
Эта страница:52

Аннотация: We deal with distributions (or measures), one-dimensional or multi-dimensional, with finite all moments. It is well-known that any such a distribution is either uniquely determined by its moment (M-determinate) or it is non-unique (M-indeterminate). This is the classical moment problem originated in works by Chebyshev, Markov and Stieltjes. Well-known are general conditions which are "iff", but they cannot be checked. Thus our discussion will be on easier and checkable conditions for either uniqueness or non-uniqueness applied to probability distributions. The emphasis will be on some recent developments such as:
  • Krein's condition. Converse Krein's condition and Lin's condition.
  • Stieltjes classes for M-indeterminate distributions. Index of dissimilarity.
  • Hardy's condition. Multidimensional moment problem.
  • Rate of growth of the moments for (in)determinacy.
There will be results, some of them very new, hints for their proof, examples and counterexamples, and also open questions.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024