Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
28 ноября 2017 г. 16:00, комн. 307 ИППИ РАН (Большой Каретный пер., 19), Москва
 


Нормальные последовательности и автоматная сложность

А. Х. Шень

Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, г. Москва

Количество просмотров:
Эта страница:220

Аннотация: Хорошо известно, что нормальные последовательности (те, где любая группа цифр встречается с одинаковой предельной частотой) можно описать как несжимаемые с помощью конечных автоматов. Однако стандартная формулировка критерия такого рода (Becher, Heiber, 2014) не соответствует общей схеме определения несжимаемости в терминах колмогоровской сложности. Этот критерий можно переформулировать, введя понятие автоматной сложности, и тогда классические результаты о нормальных последовательности (сохранение нормальности двоичного числа при умножении на рациональное, эквивалентность разных определений, а также теорема Пятецкого-Шапиро о нормальности последовательности, в которой частоты появления всех блоков не более чем в константу раз превосходят ожидаемые) получают простые и естественные доказательства в терминах конечных автоматов.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025