|
|
Римановы поверхности, алгебры Ли и математическая физика
24 ноября 2017 г. 17:00–19:00, г. Москва, Независимый Московский университет, Большой Власьевский пер., д. 11, ауд. 310
|
|
|
|
|
|
Равносоставленность изгибаемых многогранников
А. А. Гайфуллин |
Количество просмотров: |
Эта страница: | 299 |
|
Аннотация:
Гипотеза о кузнечных мехах утверждает, что объём любого изгибаемого многогранника постоянен в процессе изгибания. Она была доказана И.Х. Сабитовым (1996) для трёхмерного евклидова пространства и докладчиком (2012) для евклидовых пространств произвольной размерности. В 1979 году Р. Коннелли выдвинул так называемую сильную гипотезу о кузнечных мехах, утверждающую, что любой изгибаемый многогранник остаётся равносоставленным себе в процессе изгибания. Напомним, что согласно классическому результату М. Дена (дающему решение третьей проблемы Гильберта) многогранники равного объёма не всегда равносоставлены. Препятствие к равносоставленности называется в настоящее время инвариантом Дена.
Мы покажем, что инвариант Дена любого изгибаемого многогранника в евклидовом пространстве произвольной размерности остаётся постоянным в процессе изгибания. Для евклидовых пространств размерностей 3 и 4 известно, что многогранники с равными объёмами и инвариантами Дена всегда равносоставлены. Поэтому из нашего результата вытекает сильная гипотеза о кузнечных мехах в этих размерностях.
Доказательство опирается на изучение аналитического продолжения инварианта Дена на комплексификацию конфигурационного пространства изгибаемого многогранника.
Доклад основан на совместной работе с Л.С. Игнащенко.
|
|