Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Дифференциальная геометрия и приложения
2 октября 2017 г. 16:45–18:20, г. Москва, ГЗ МГУ, ауд. 16-10
 


Кобордизмы графов, критерий срезанности нечетных свободных узлов и “закон сохранения картинки”

В. О. Мантуровa, Д. А. Федосеевb

a Московский государственный технический университет имени Н. Э. Баумана
b Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:139

Аннотация: Одной из важнейших задач в теории классических узлов является задача оценки рода двумерной пленки, которой можно затянуть два узла. Интересен также частный случай: конкордантность тривиальному узлу, называемая срезанностью.
В 2004 году В.Г. Тураев определил «свободные узлы» = «классы гомотопии гауссовых слов» как классы эквивалентности 4-валентных графов со структурой по формальным движениям Рейдемейстера. Тураев предположил, что все свободные узлы тривиальны.
В 2009 году гипотеза Тураева была опровергнута первым докладчиком; были построены инварианты свободных узлов, принимающие значения в картинках - графах, которые сами являются диаграммами свободных узлов. Был выдвинут принцип

если диаграмма достаточна сложна, то она реализует сама себя,

означающий, что для любого графа $\Gamma'$ в классе эквивалентности достаточно сложного графа $\Gamma$ граф $\Gamma$ получается из $\Gamma'$ некоторыми разведениями.
Идея кобордантности легко может быть перенесена на свободные узлы, которые в данном случае удобно представлять оснащенными четырехвалентными графами. В этом случае имеет смысл говорить о затягивающем комплексе, который представляет собой диаграмму двумерного узла.
Примеры первых не кобордантных тривиальному свободных узлов были построены первым докладчиком в 2009 году посредством некоторых числовых инвариантов.
В настоящем докладе будет изложен новый результат о критерии срезанности свободных узлов, все перекрестки (вершины) которых являются нечетными по Гауссу.
Будет показано, что для таких узлов срезанность эквивалентна элементарной срезанности, то есть срезанности без каспов и тройных точек у затягивающего комплекса. Как следствие, вопрос срезанности сводится к комбинаторной задаче спаривания хорд свободного узла, которая может быть решена методом непосредственного конечного перебора по данной диаграмме. Таким образом, динамическая задача о срезанности сводится к статической задаче об элементарной срезанности.
Новые результаты можно трактовать как первый пример "закона сохранения картинки" на уровне кобордизмов, когда к графам применяются не только движения Рейдемейстера, но и более грубые движения, связанные с затягивающими двумерными поверхностями. Некоторые (нечетные) картинки оказываются "устойчивыми", что позволяет сводить динамическую задачу к статической.
Результаты докладчиков можно понимать как первые шаги в новом направлении - теории кобордизмов графов.
Будут сформулированы различные нерешенные задачи.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024