Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Workshop on Proof Theory, Modal Logic and Reflection Principles
18 октября 2017 г. 17:15–17:50, Москва, Математический институт им. В.А. Стеклова РАН
 


Prolongable satisfaction classes and iterations of uniform reflection over $\mathrm{PA}$

M. Łełyk
Видеозаписи:
MP4 1,190.9 Mb
MP4 326.3 Mb

Количество просмотров:
Эта страница:262
Видеофайлы:58

M. Łełyk



Аннотация: We study nonstandard models of iterations of uniform reflection over $\mathrm{PA}$ that contain a partial inductive satisfaction class. Our original motivation was to prove an analogue of the Enayat and Visser theorem that each partial inductive satisfaction class can be prolonged in an end-extension to a full satisfaction class (proved independently and unpublished) in the case of the $\Delta_0$ inductive satisfaction class.
To achieve our goal we introduced the notion of a prolongable satisfaction class: in words a class $S$ on $M$ is prolongable if there exists an elementary end extension $N$ of $M$ and a partial inductive satisfaction class $S'$ on $N$ which “covers” $M$ and prolongs $S$. $S$ is $n$-prolongable if this can be repeated $n$-times starting from $S$.
It turned out that the existence of an $n$-prolongable partial inductive satisfaction class characterizes the models of $n$-iterated uniform reflection over $\mathrm{PA}$ ($\mathrm{UR}^n (\mathrm{PA})$):
Theorem 1. For a nonstandard model $M \vDash \mathrm{PA}$ having a partial inductive satisfaction class $S$ the following are equivalent
  • $M \vDash \mathrm{UR}^n (\mathrm{PA})$
  • $S$ can be restricted to an $n$-prolongable satisfaction class.
As a limit we obtain our desired theorem:
Theorem 2. For a nonstandard model $M \vDash \mathrm{PA}$ having a partial inductive satisfaction class $S$ the following are equivalent
  • $M \vDash \mathrm{UR}^{\omega} (\mathrm{PA})$
  • There exist a restriction $S'$ of $S$, an elementary end extension $N$ of $M$ and a full $\Delta_0$ inductive satisfaction class $S''$ on $N$ such that $S' \subseteq S''$.
Our methods consist in internalizing the standard existence arguments for partial inductive satisfaction classes. Moreover, Theorem 2, provides a new proof of conservativity of the theory $\mathrm{CT}_0$ over $\mathrm{UR}^{\omega} (\mathrm{PA})$ (the first was presented in [1]).

Язык доклада: английский

Список литературы
  1. H. Kotlarski, “Bounded induction and satisfaction classes”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 32:31–34 (1986), 531–544  zmath  scopus
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024