Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Workshop on Proof Theory, Modal Logic and Reflection Principles
17 октября 2017 г. 12:15–12:50, Москва, Математический институт им. В.А. Стеклова РАН
 


The reverse mathematics of Ekeland's variational principle

P. Shafer
Видеозаписи:
MP4 913.8 Mb
MP4 913.8 Mb

Количество просмотров:
Эта страница:245
Видеофайлы:38

P. Shafer



Аннотация: (Joint with David Fernández-Duque, Henry Towsner, and Keita Yokoyama.)
Let $X$ be a complete metric space, and let $V$ be a lower semi-continuous function from $X$ to the non-negative reals. Ekeland's variational principle states that $V$ has a ‘critical point’, which is a point $x^*$ such that $d(x^*, y)> V(x^*) - V(y)$ whenever y is not $x^*$. This theorem has a variety of applications in analysis. For example, it implies that certain optimization problems have approximate solutions, and it implies a number of interesting fixed point theorems, including Caristi's fixed point theorem.
We analyze the proof-theoretic strength of Ekeland's variational principle in the context of second-order arithmetic. We show that the full theorem is equivalent to $\Pi^1_1-\text{CA}_0$. We also show that a few natural special cases, such as when $V$ is assumed to be continuous and/or X is assumed to be compact, are equivalent to the much weaker systems $\text{ACA}_0$ and $\text{WKL}_0$.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024