|
|
Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
30 августа 2017 г. 14:00, г. Москва, МИАН
|
|
|
|
|
|
Некоторые редукции систем Хитчина ранга 2 родов 2 и 3
О. К. Шейнман Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
|
Количество просмотров: |
Эта страница: | 210 |
|
Аннотация:
Для канонических уравнений, соответствующих квадратичному гамильтониану Хитчина, предъявлены явные решения, при которых проекции точек Тюрина на риманову сферу (при накрытии) движутся по квадратичным параболам для рода 2 и по кубическим для рода 3. Найдены некоторые другие явные решения.
Насколько известно автору, такая задача для систем Хитчина раньше не ставилась. Системам Хитчина малых
рангов и рода 2 посвящены две работы: B.van Geemen-E.Previato ('94) и Krz.Gawedzki-P.Tran-Ngoc-Bich ('98).
В первой, по собственному признанию авторов, изучаемые гамильтонианы явно не посчитаны, и связь их
с гамильтонианами Хитчина до конца не ясна. Во второй делается попытка вычисления координат действие-угол,
далеко перекрытая в общем виде И.М.Кричевером в 2001 г. Для систем рода 3 никаких специфических результатов автору не известно.
Поскольку исходные уравнения оказались необозримыми, мы ищем на самом деле решения редуцированных систем. Главная техническая трудность состоит в доказательстве допустимости редукции. Это делается с применением программ символьных вычислений. Редуцированные системы представляют собой некоторые задачи движения двух и трех тел (в зависимости от рода кривой) на прямой. Доказаны интересные и трудные
соотношения для их динамических переменных, позволяющие в некоторых случаях получить решения. Полностью роль этих соотношений пока не ясна.
|
|