Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Взрослая математика вокруг детских рисунков. Международная конференция, посвященная 65-летию Г. Б. Шабата.
25 мая 2017 г. 15:20–15:40
 


Doubly Hurwitz Beauville groups

G. A. Jones
Видеозаписи:
MP4 538.4 Mb
MP4 136.9 Mb

Количество просмотров:
Эта страница:163
Видеофайлы:31



Аннотация: A Beauville surface is a complex algebraic surface of general type, of the form $S = (C_{i} \times C_{2})/G$, where $C_{1}$ and $C_{2}$ are the Belyi curves underlying two regular dessins of genera $g_{1}, g_{2} > 1$, which have the same automorphism $G$ which acts freely on their product. (These surfaces were introduced by Beauville in 1978, and subsequently studied by algebraic geometers such as Catanese, along with Bauer and Grunewald.) The Hurwitz bound implies that $|G| \leq 1764 \chi(S)$, with equality if and only if the Beauville group $G$ acts as a Hurwitz group on both curves $C_{i}$. Equivalently, $G$ has two generating triples of type (2, 3, 7), such that no generator in one triple is conjugate to a power of a generator in the other. In joint work with Emilio Pierro, and in answer to a question of Sasha Zvonkin, we show that this property is satisfied by all alternating groups of sufficiently large degree, together with their double covers, but by no sporadic simple groups or simple groups in various families of small Lie rank.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024