Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Взрослая математика вокруг детских рисунков. Международная конференция, посвященная 65-летию Г. Б. Шабата.
25 мая 2017 г. 09:20–09:30
 


Проблема Полиа для перманента

A. È. Guterman
Видеозаписи:
MP4 76.4 Mb
MP4 300.3 Mb

Количество просмотров:
Эта страница:246
Видеофайлы:63

A. È. Guterman



Аннотация: Two important functions in matrix theory, determinant and permanent, look very similar: $\det A = \sum_{\sigma \in S_{n}} (-1)^\sigma a_{1_{\sigma(1)}} \ldots a_{n_{\sigma(n)}}$ and $\mathrm{per} A = \sum_{\sigma \in S_{n}} a_{1_{\sigma(1)}} \ldots a_{n_{\sigma(n)}}$, here $A = (a_{ij}) \in M_{n} (\mathbb F)$ is an $n \times n$ matrix over a field $\mathbb F$ and $S_{n}$ denotes the set of all permutations of the set {1, . . . , n}. While the computation of the determinant can be done in a polynomial time, it is still an open question, if there are such algorithms to compute the permanent. Due to this reason, starting from the work by Polya, 1913, different approaches to convert the permanent into the determinant were under the intensive investigation. We plan to give a short exposition of this theory during the past century including our recent research results. In particular, we prove that there are no bijective converters between permanent and determinant over finite fields. We also plan to provide sharp upper bounds for permanents of (1,-1)-matrices depending on their rank, which proves the Krauter conjecture (1985) answering the question by Wang (1974).
The talk is based on a series of joint works with Mikhail Budrevich, Gregor Dolinar, Bojan Kuzma and Marko Orel.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024