Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция по теории чисел и приложениям в честь 80-летия А. А. Карацубы
22 мая 2017 г. 11:40–12:10, г. Москва, Математический институт им. В. А. Стеклова
 


Non-vanishing of automorphic $L$-functions of prime power level (joint papers with O.G. Balkanova)

[Необращение в ноль $L$-функций автоморфных форм относительно конгруэнц подгруппы, когда уровень равен степени простого числа (по совместным работам с О.Г. Балкановой)]

Д. А. Фроленков

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
Видеозаписи:
MP4 182.9 Mb
MP4 720.9 Mb

Количество просмотров:
Эта страница:362
Видеофайлы:71

D. Frolenkov
Фотогалерея



Аннотация: Иванец и Сарнак доказали, что как минимум 25% значений $L$-функций, ассоциированных с голоморфными новыми формами четного веса и уровня $N\to\infty$, не обнуляются в критической точке, когда $N$ свободно от квадратов и $\phi(N)\sim N$. Мы распространим данный результат на случай, когда уровень равен степени простого числа $N=p^{\nu}$, $\nu\geqslant 2$. Доказательство основано на вычислении асимптотических формул для скрученных моментов
$$ M_1(l,u,v)=\sum_{f \in H_{2k}^{*}(N)}^{h}\lambda_f(l)L_{f}\bigl(\tfrac{1}{2}+u+v\bigr), $$

$$ M_2(l,u,v)=\sum_{f \in H_{2k}^{*}(N)}^{h}\lambda_f(l)L_{f}\bigl(\tfrac{1}{2}+u+v\bigr)L_{f}\bigl(\tfrac{1}{2}+u-v\bigr), $$
и на применении техники успокаивающих множителей.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024