Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция по теории чисел и приложениям в честь 80-летия А. А. Карацубы
22 мая 2017 г. 15:25–15:55, г. Москва, Математический институт им. В. А. Стеклова
 


An effective version of the Bombieri-Vinogradov theorem

[Эффективная версия теоремы Бомбьери -Виноградова]

А. А. Седунова

Georg-August-Universität Göttingen
Видеозаписи:
MP4 966.9 Mb
MP4 245.2 Mb

Количество просмотров:
Эта страница:566
Видеофайлы:263

A. A. Sedunova
Фотогалерея



Аннотация: Доклад посвящён новой эффективной версии теоремы Бомбьери-Винградова, которая уточняет предыдущий результат Ф. Дресса, Х. Иванца и Дж. Тененбаума [1]. Именно, справедлива следующая
Теорема. Пусть $x\geqslant 4$, $1\leqslant Q_{1}\leqslant Q\leqslant x^{\,1/2}$ и пусть $l(q)$ обозначает наименьший простой делитель числа $q$. Тогда
$$ \sum\limits_{\substack{q\leqslant Q \\ l(q)>Q_{1}}}\max_{2\leqslant y\leqslant x}\max_{(a,q)=1}\biggl|\psi(y;q,a)\,-\,\frac{\psi(y)}{\varphi(q)}\biggr|\,\ll\, \bigl(xQ_{1}^{-1}\,+\,Qx^{\,1/2}\,+\,x^{\,95/96}\log{x}\bigr)(\log{x})^{3}. $$
(Уточнение состоит в замене множителя $(\log{x})^{7/2}$ из [1] на $(\log{x})^{3}$). Доказательство этой теоремы использует тождество Вона с весами, позволяющее применить сглаживание наряду с приёмами Грэхема, связанными с решетом Сельберга.
[1] F. Dress, H. Iwaniec, G. Tenenbaum, Sur une somme liée à la fonction de Möbius. J. Reine Angew. Math. 340 (1983). P. 53 – 58.
[2] S. Graham, An asymptotic estimate related to Selberg’s sieve. J. Number Theory. 10:1 (1978). P. 83 – 94.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024