Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Лекции и семинары Независимого Московского университета
17 апреля 2017 г. 12:00
 


On convex planar billiards, Birkhoff Conjecture and whispering galleries

V. Yu. Kaloshin
Видеозаписи:
MP4 512.6 Mb
MP4 2,063.3 Mb
MP4 1,062.8 Mb

Количество просмотров:
Эта страница:396
Видеофайлы:65

V. Yu. Kaloshin



Аннотация: A mathematical billiard is a system describing the inertial motion of a point mass inside a domain with elastic reflections at the boundary. In the case of convex planar domains, this model was first introduced and studied by G.D. Birkhoff, as a paradigmatic example of a low dimensional conservative dynamical system. A very interesting aspect is represented by the presence of 'caustics', namely curves inside the domain with the property that a trajectory, once tangent to it, stays tangent after every reflection (as on the right Figure). Besides their mathematical interest, these objects can explain a fascinating acoustic phenomenon, known as "whispering galleries", which can be sometimes noticed beneath a dome or a vault. The classical Birkhoff conjecture states that the only integrable billiard, i.e., the one having a region filled with caustics, is the billiard inside an ellipse. We show that this conjecture holds near ellipses.

Язык доклада: английский

Website: https://ium.mccme.ru/s17/anons.html
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024