|
|
Семинар отдела алгебры и отдела алгебраической геометрии (семинар И. Р. Шафаревича)
20 апреля 2017 г. 15:00, г. Москва, МИАН, комн. 540 (ул. Губкина, 8)
|
|
|
|
|
|
Motivic Gamma functions
С. Блох |
Количество просмотров: |
Эта страница: | 214 |
|
Аннотация:
I will describe some aspects of work by V. Golyshev and collaborators on motivic gamma
functions. When a variety $X$ is “spread out”, i.e. one is given $f: X -> P^1$, then periods on $X$ can be interpreted as periods of the Gauss-Manin connection on$ P^1$. The Mellin transforms of these
periods, which Golyshev calls motivic Gamma functions, satisfy the same recursion as the Picard Fuchs equations. In special cases, their derivatives at $s=0$ yield Mahler measure. Inhomogeneous solutions of the recursion are linked to the Apery program and to limits of Beilinson regulators.
|
|