Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Random Matrices and Extreme Value Statistics: two-day minicourse
22 мая 2017 г. 11:00–12:30, г. Москва, Лаборатория Ж.-В.Понселе
 


Top eigenvalue of a random matrix: Tracy-Widom distribution and third order phase transition – lecture 1

S. N. Majumdar

Laboratoire de Physique Théorique et Modèles Statistiques
Видеозаписи:
MP4 811.9 Mb
MP4 1,683.2 Mb
MP4 3,268.0 Mb

Количество просмотров:
Эта страница:328
Видеофайлы:129

S. N. Majumdar
Фотогалерея



Аннотация: Tracy-Widom distribution describes the probability distribution of the typical fluctuations of the top eigenvalue of a Gaussian $(NxN)$ random matrix. Over the last decade, the same distribution has surfaced in a wide variety of problems from Kardar-Parisi-Zhang (KPZ) surface growth, directed polymer, random permutations, all the way to large $N-$gauge theory and wireless communications, with some of these problems having no apriori connection to random matrices. Why is the Tracy-Widom distribution so ubiquitous? In statistical physics, universality is usually accompanied by a phase transition–near a critical point often the details become completely irrelevant. So, is there an underlying phase transition associated with the Tracy-Widom distribution?
In this talk, I will demonstrate that for large but finite $N$, indeed there is an underlying third order phase transition from a “strong” coupling to a “weak” coupling phase–the Tracy-Widom distribution turns out to be the universal crossover function between these two phases for finite but large N. Several examples of this third order phase transition will be discussed.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024