Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Workshop: Motives, Periods and L-functions
12 апреля 2017 г. 18:00–18:45, г. Москва, НИУ "Высшая школа экономики", ул. Усачевой, 6
 


Non-commutative crystalline cohomology

A. Petrov

National Research University "Higher School of Economics" (HSE), Moscow

Количество просмотров:
Эта страница:127

Аннотация: Let $X$ be a scheme over $F_p$. The algebraic de Rham cohomology has the following striking property: for any two liftings $X_1$, $X_2$ of $X$ over $Z/p^nZ$ their de Rham cohomology $H_dR(X_1/Z/p^n)$ and $H_dR(X_2/Z/p^n)$ are canonically isomorphic. This leads to the definition of crystalline cohomology – a cohomology theory which assigns to any scheme $X$ a $Z/p^n$-module which is canonically isomorphic to the de Rham cohomology of any lifting(if it exists) and gives a completely new object if there are no lifting.
I will discuss a non-commutative analog of this construction. Namely, considering periodic cyclic homology of a $DG$ algebra as a non-commutative analog of the de Rham cohomology, non-commutative crystalline cohomology will be a functor which assigns to a $DG$ algebra $A$ over $F_p a Z/p^n$ module which is canonically isomorphic to the periodic cyclic homology of any lifting of $A$ over $Z/p^n$. This is a joint work with Vadim Vologodsky.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024