Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Workshop: Motives, Periods and L-functions
12 апреля 2017 г. 15:00–15:45, г. Москва, НИУ "Высшая школа экономики", ул. Усачевой, 6
 


Bimodular forms with given residues

N. Sakharova

National Research University "Higher School of Economics" (HSE), Moscow

Количество просмотров:
Эта страница:88

Аннотация: Let $Y_0(1)$ be a modular curve and $T_N$ be a curve which is the graph of the $N$-th modular Hecke correspondence embedded in $Y_0 (1) х Y_0 (1)$. For a finite subset S of natural numbers consider the divisor $D_S$ which is the union of the modular correspondences. A non compact surface that is the complement to this divisor is denoted by $Y_S$. It is well known that in case of the divisor with normal crossings, the cohomology of the complement of the divisor on a nonsingular complex manifold is expressed in terms of the cohomology of the complex of differential forms with logarithmic poles along the divisor.
I'll talk about the construction of such differential forms with given residues on the non compact surface $Y(1, N)$.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024