|
|
Межкафедральный семинар МФТИ по дискретной математике
9 марта 2017 г. 18:30, г. Долгопрудный, Актовый зал Лабораторного корпуса МФТИ
|
|
|
|
|
|
NP-трудность вложимости и почти вложимости гиперграфов в R^d
А. Б. Скопенков |
Количество просмотров: |
Эта страница: | 203 |
|
Аннотация:
A map $f\colon K\to \mathbb{R}^d$ of a simplicial complex is an almost
embedding if $f(\sigma)\cap f(\tau)=\emptyset$ whenever $\sigma,\tau$
are disjoint simplices of $K$.
Theorem. {\it For each integers $d,k\ge2$ such that $d=\frac{3k}2+1$
the algorithmic problem of recognition embeddability (almost
embeddability) of finite $k$-dimensional complexes in $\mathbb{R}^d$ is NP
hard.}
This talk will be accessible to non-specialists.
I will describe motivations and ideas of proof of this result,
including singular versions of Higher-dimensional Borromean Rings
Lemma and Generalized Van Kampen-Flores Theorem.
(On joint work with Martin Tancer and on Matoušek-Tancer-Wagner work)
|
|