|
|
Семинар по теории функций действительного переменного
3 марта 2017 г. 18:30–20:00, г. Москва, ГЗ МГУ, аудитория 15-03
|
|
|
|
|
|
Мультипликаторы и скорость убывания преобразования Фурье
В. В. Лебедев |
Количество просмотров: |
Эта страница: | 161 |
|
Аннотация:
Рассматриваются пространства $M_p(\mathbb T)$ функций на окружности $\mathbb T$, являющихся $l^p(\mathbb Z)$ -мультипликаторами Фурье. Мы показываем, что, какова бы ни была положительная невозрастающая последовательность $\{a(n), n=1, 2,\ldots\}\notin l^1$, найдется непрерывная функция на $\mathbb
T$, такая, что ее преобразование Фурье $\widehat{f}$ удовлетворяет условию $\widehat{f}(k)=O(a(|k|)), \,
|k|\rightarrow \infty$, но $f\notin M_p(\mathbb T)$ при $p\neq 2$.
Результат получен совместно с В. А. Олевским.
|
|