|
|
Межкафедральный семинар МФТИ по дискретной математике
23 марта 2017 г. 18:30, г. Долгопрудный, Актовый зал Лабораторного корпуса МФТИ
|
|
|
|
|
|
Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates
В. В. Подольский |
Количество просмотров: |
Эта страница: | 230 |
|
Аннотация:
We study the following computational problem: for which values of $k$,
the majority of $n$ bits $\text{MAJ}_n$ can be computed with a depth two
formula whose each gate computes a majority function of at most $k$
bits? The corresponding computational model is denoted by $\text{MAJ}_k
\circ \text{MAJ}_k$. We observe that the minimum value of $k$ for which
there exists a $\text{MAJ}_k \circ \text{MAJ}_k$ circuit that has high
correlation with the majority of $n$ bits is equal to
$\Theta(n^{1/2})$. We then show that for a randomized $\text{MAJ}_k
\circ \text{MAJ}_k$ circuit computing the majority of $n$ input bits
with high probability for every input, the minimum value of $k$ is equal
to $n^{2/3+o(1)}$. We show a worst case lower bound: if a $\text{MAJ}_k
\circ \text{MAJ}_k$ circuit computes the majority of $n$ bits correctly
on all inputs, then $k\geq n^{13/19+o(1)}$. This lower bound exceeds the
optimal value for randomized circuits and thus is unreachable for pure
randomized techniques. For depth $3$ circuits we show that a circuit
with $k= O(n^{2/3})$ can compute $\text{MAJ}_n$ correctly on all inputs.
The talk is based on joint results with Alexander Kulikov.
|
|