Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Городской семинар по теории вероятностей и математической статистике
17 февраля 2017 г. 18:00–20:00, г. Санкт-Петербург, ПОМИ, ауд. 311 (наб. р. Фонтанки, 27)
 


Вокруг гипотезы о средней ширине правильного симплекса

Д. Н. Запорожец

Количество просмотров:
Эта страница:243

Аннотация: Как расположить $n+1$ точку на $(n-1)$-мерной сфере, чтобы средняя ширина их выпуклой оболочки была максимальна? Старая гипотеза утверждает, что для этого точки должны располагаться в вершинах правильного симплекса. Данный вопрос является на удивление сложным. Несколько авторов предположили наличие доказательства, но гипотеза все еще является открытой, даже в малых размерностях. Кроме естественной формулировки с точки зрения выпуклой геометрии, данная задача имеет важное значение в теории информации, поскольку тесно связана с так называемой Simplex code conjecture. Также данная гипотеза имеет интересную вероятностную интерпретацию на языке гауссовских случайных величин. В докладе мы обсудим эти вопросы более подробно, а также поговорим о схожих задачах, многие из которых тоже являются открытыми.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024