Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар им. В. А. Исковских
9 февраля 2017 г. 18:00, г. Москва, МИАН, комн. 530 (ул. Губкина, 8)
 


Изолированные факторособенности в характеристике $p$

Д. А. Степанов

Московский государственный технический университет имени Н. Э. Баумана

Количество просмотров:
Эта страница:194

Аннотация: Известная теорема Шевалле-Шапарда-Тодда утверждает, что фактормногообразие $V/G$ векторного пространства $V$ по конечной линейной группе $G$ неособо тогда и только тогда, когда группа $G$ порождена псевдоотражениями. Вначале эта теорема была доказана в характеристике $0$, а затем обобщена на случай групп $G$, порядок которых не делится на характеристику поля. В модулярном случае (характеристика делит порядок группы) часть “только тогда” теоремы перестаёт быть верной. Кемпер и Малле доказали теорему, усиливающую теорему Шевалле–Шепарда–Тодда для неприводимых модулярных групп, порождённых псевдоотражениями. В докладе будет рассказано о результатах Кемпера и Малле, их связи с задачей классификации изолированных факторособенностей в характеристике p, а также о результатах Степанова и Щиголева, обобщающих теорему Кемпера и Малле для приводимых групп в случае размерности $3$. Как следствие, получается, что классификация модулярных изолированных факторособенностей в размерности не выше $3$ по существу не отличается от классификации немодулярных изолированных факторособенностей.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024