Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Автоморфные формы и их приложения
24 января 2017 г. 18:00–20:00, г. Москва, Факультет математики ВШЭ, ул Усачева 6, аудитория 306
 


Построение рода Виттена через деформационное квантование

А. Приходько

НИУ ВШЭ

Аннотация: По любой эллиптической кривой над C можно построить эллиптическую комплексно-ориентированную обобщённую теорию когомологий. С любой такой теорией стандартной процедуой связан C-значный род Хирцебруха. Род Виттена - это в некотором смысле универсальный эллиптический род. Он был определён (используя физические аргументы) в статье "E. Witten, Elliptic genera and quantum field theory" как суперконформный индекс в некоторой двумерной теории поля. В статье "A geometric construction of the Witten genus II" в качестве приложение развитого им подхода к теориям поля Кэвин Костелло приводит строгое математическое обоснование определения Виттена. Нужная теория поля для многообразия X получается деформационным кантованием классической теории построенной по (производному) пространству отображений из эллиптической кривой в T^* X. В своём докладе я расскажу этот подход Костелло.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024