|
|
Петербургский топологический семинар им. В. А. Рохлина
5 декабря 2016 г. 17:15–19:00, г. Санкт-Петербург, ПОМИ, комн. 311 (наб. р. Фонтанки, 27)
|
|
|
|
|
|
A user's guide to topological Tverberg conjecture
А. Б. Скопенков Московский физико-технический институт (государственный университет), г. Долгопрудный Московской обл.
|
Количество просмотров: |
Эта страница: | 169 |
|
Аннотация:
http://arxiv.org/abs/1605.05141
The well-known topological Tverberg conjecture was considered
a central unsolved problem of topological combinatorics.
The conjecture asserts that for each integers
$
r,d>1
$ and each
continuous map
$$
f\colon\Delta\to\mathbb R^d
$$
of the
$
(d+1)(r-1)
$-dimensional simplex
$
\Delta
$ there are
pairwise disjoint subsimplices
$
\sigma_1,\dots,\sigma_r\subset\Delta
$ such that
$$
f(\sigma_1)\cap\dots\cap f(\sigma_r)\ne\varnothing.
$$
A proof for a prime power
$
r
$
was given by I. Bárány,
S. Shlosman, A. Szűcs, M. Özaydın and A. Volovikov in
1981–1996.
A counterexample for other
$
r
$
was found in a series of papers
by M. Özaydın, M. Gromov, P. Blagojević, F. Frick,
G. Ziegler, I. Mabillard and U. Wagner, most of them recent.
The arguments form a beautiful and fruitful interplay between
combinatorics, algebra and topology.
We present a simplified explanation of easier parts of the
arguments, accessible to non-specialists in the area, and give
reference to more complicated parts.
I will also describe stronger counterexamples of
http://arxiv.org/abs/1511.03501.
|
|