Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Дифференциальные операторы на сингулярных пространствах, алгебраически интегрируемые системы и квантование
24 октября 2016 г. 18:30–20:00, г. Москва, Главное здание МГУ им. М. В. Ломоносова, аудитория 13-24
 


The kernel of the Laplace–Beltrami operator on a decorated graph

A. A. Tolchennikov

Количество просмотров:
Эта страница:131

Аннотация: For the Laplace–Beltrami operator (the operator is given by a Lagrangian plane $\Lambda$ ), an isomorphism between the its kernel and intersection of $\Lambda$ and fixed lagrangian plane is described. For the $\Delta^0$ operator with “continuity” conditions (on a connected finite graph with $n$ edges and $v$ vertices), the inequality $\dim$ ker $\Delta^0 \le n - v + 2$ is obtained. It is also proved that the quantity $n - v + 1 - \dim$ ker $\Delta^0$ cannot be reduce while adding new edges and manifolds.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024