Аннотация:
Полиэдральное произведение представляет собой функториальную комбинаторно-топологическую конструкцию, сопоставляющую топологическое пространство $(X,A)^K$
паре топологических пространств $(X,A)$ и симплициальному комплексу $K$. Аналогичная конструкция имеется и в категории групп и называется граф-произведением. Частным случаем граф-произведений являются прямоугольные группы Коксетера, играющие важную роль в геометрической теории групп. Особый интерес представляют геометрические прямоугольные группы Коксетера, порождённые отражениями в гипергранях многогранников, реализуемых в пространстве Лобачевского с прямыми двугранными углами. Каждому такому многограннику сопоставляется семейство асферических гиперболических многообразий, фундаментальные группы которых суть коммутанты прямоугольных групп Коксетера или их конечных расширений. Используя результаты о топологии полиэдральных произведений, мы описываем строение коммутантов прямоугольных групп Коксетера, а затем применяем эти результаты для классификации гиперболических многообразий с точностью до диффеоморфизма.