Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




26 января 2016 г. 14:00–15:00, Seminar on Algebra, Geometry and Physics, Max Planck Institute for Mathematics  


The many faces of the elliptic beta integral

V. P. Spiridonovab

a Max Planck Institute for Mathematics
b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics

Количество просмотров:
Эта страница:52

Аннотация: The elliptic beta integral, a contour integral of a particular product of elliptic gamma functions, admits an explicit evaluation. This formula represents (i) an elliptic binomial theorem, (ii) top known univariate extension of the Euler beta integral, (iii) a germ for building an elliptic analogue of the Euler-Gauss hypergeometric function and of very many elliptic hypergeometric integrals on root systems, (iv) a normalization of the measure for biorthogonal functions comprising all classical systems of orthogonal functions, (v) an integral operator realization of the Coxeter relations of a permutation group, (vi) a confinement criterion in a four-dimensional supersymmetric quantum field theory. After a brief explanation of the above points, I'll discuss a recent proposal by Kels of an extension of this identity by addition of discrete parameters related to the lens spaces.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024