Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар «Глобус» (записи с 2011 года)
6 октября 2016 г. 15:40, г. Москва, конференц-зал НМУ (Москва, Большой Власьевский пер., 11)
 


Эллиптические гипергеометрические функции и их приложения

В. П. Спиридонов

Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н. Н. Боголюбова
Видеозаписи:
MP4 688.4 Mb
MP4 1,427.5 Mb
MP4 2,771.5 Mb

В. П. Спиридонов



Аннотация: Я кратко напомню классические результаты Эйлера по обычным и $q$-гипергеометрическим функциям. Затем приведу представление эллиптических функций в виде отношения произведений тэта-функций Якоби. Этот справочный материал необходимым для описания эллиптических гипергеометрических функций, появление которых на рубеже 2000 г. явилось полным сюрпризом, т.к. считалось, что специальные функции гипергеометрического типа с “классическими” свойствами существуют только в двух ипостасях — обычном и его $q$-аналоге. Трансцендентные эллиптические гипергеометрические функции определяются интегральным представлением, описание которого будет дано следуя идеям Похгаммера-Хорна. Это приведет к “эллиптическим” обобщениям гамма-функции, бета-интеграла, гипергеметрической функции Эйлера-Гаусса, гипергеометрического уравнения, интеграла Сельберга и других специальных функций.
Как положено специальным функциям математической физики, эллиптические гипергеометрические интегралы нашли важные приложения в теоретической физике. В частности, они описывают собственные функции гамильтонианов некоторых интегрируемых $N$-частичных систем квантовой механики. В четырехмерной квантовой теории поля они определяют суперконформные индексы суперсимметричных теорий, а их свойства дают наиболее строгое математическое подтверждение гипотезы дуальности Зайберга для ряда суперконформных теорий поля. В статистическое механике, те же самые интегралы описывают наиболее общие известные решаемые модели на двумерных решетках и наиболее сложные решения уравнения Янга-Бакстера. Этот материал будет описан в докладе на качественном уровне.

Список литературы
  1. В.П. Спиридонов, “Очерки теории эллиптических гипергеометрических функций”, УМН, 63:3 (2008), 3–72  mathnet  crossref  mathscinet  zmath
  2. В.П. Спиридонов, “Эллиптические гипергеометрические функции”, дополнительная глава в книге Р. Аски, Р. Рой, Дж. Эндрюс, Специальные функции, МЦНМО, Москва, 2013, 577–606
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024